Name Student Number

1. (Link reversal)

- For a given directed graph with edge set $E=\{(m, r),(n, r),(v, m),(v, n),(w, n),(y, w)$, $(x, w),(y, x),(y, z),(z, x)\}$, apply both full reversal and partial reversal. Assume node r is the root and link (n, r) is a broken link. Show all details including the number of rounds and the number of times links are reversed. Note that (m, r) means a directed link from node m to node r.

2. (Connected dominating set)

- For a given connected graph with edge set $E=\{12,25,27,28,34,36,38,45,58,67,78\}$. find out the CDS using (1) marking process only, (2) marking process plus Rules 1 and 2, (3) marking process plus Rule k, and (4) replacement path. For each case, consider two situations (a) each node has 2-hop information and (b) each node has 3-hop information. 12 represents an undirected link between nodes 1 and 2. All methods can be found at http : //www.cis.temple.edu/ ~wu/research/publications/Publication_files/TC0904.pdf and its references [4] and [19] for extra information if needed.

3. (Clustering)

- For a given connected graph with edge set $E=\{12,15,23,26,34,36,37,48,56,67,68\}$. Show details how clusterheads and cores are selected using the traditional clustering method and core extraction method. Here node id is used as the priority: the smaller the id the higher the priority. Both methods can be found at http : //www.cis.temple.edu/ ~ wu/research/publications/Publication_files/rout3.pdf and its references [10] and [25] for extra information if needed.

4. (Energy-efficient multicasting)

- Given a geometric graph: $1:(12,28), 2:(34,49), 3:(8,6), 4:(2,45), 5:(40,12), 6:$ $(30,20), 7:(25,13), 8:(25,30), 9:(1,23), 10:(20,26)$. Here $u:\left(u_{x} ; u_{y}\right)$ represents the coordinates of node u at axes x and y. We assume node 10 is the source. Find energyefficient broadcast using (a) Least-Unicast-Cost (BLU), (b) Broadcast Link-based MS T (BLiMST), (c) Broadcast Incremental Power (BLP) without sweep, (d) BLP with sweep, and (e) optimal solution using exhaustive enumeration. It is assumed that the transmission cost is based on $P(d i s)=d i s^{2}$. (Ref: J. Wieselthier, G. Nguyen, and A. Ephremides, INFOCOM 2000 and INFOCOM 2002.)

5. (Topology control)

- For the example above, find minimal uniform transmission range using (a) Kruskals MST and (b) Prims MST starting from node 1. (Ref: Q. Dai and J. Wu, Cluster Computing 2005 and R. Ramanathan and R. Rosales-Hain, INFOCOM 2000.)

